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The subject of the paper is an investigation of the dynamic properties 

of a system with one degree of freedom, whose behavior is described 
by the differential equation 

The function F(u) is the characteristics of a relay with a zone of 

non-sensitivity; it is double-valued at some values of the argument 
U. Fig.1 shows this function in ideslized form, When u increases 

starting from zero, the relay will be connected at u = a. When u 

begins to decrease after having reached its maximum value urnax, it 
will be disconnected at u = a , if urnax < 6. and at u = b. if urnax> 6. 

In the latter case the advancing effect takes place, In the following 

we shall consider the real characteristics (Fig.2) instead of the 

Fig. 1. Fig. 2. 

idealized one. Here the fact is taken into account, that the dis- 

connection of the relay will actually occur at the dropping of the 

argument below u max < b, not at u = a, but at a somewhat smaller 
value II= a(1 - 6,). Analogously, if u starts increasing after having 
reached the minimum value IL,,,,,, > (1, the relay becomes connected at 
u= b+ a?,, and not at u = b. 

Reprint Order No. PMM 5. 
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Depending upon the properties of the system without a relay, the 

latter may play different roles: (1) If the system by itself is un- 

stable CL < 0 or M < 0). then the relay may secure the stability of 
motion at initial deviations, not exceeding definite limits; (2) If 
the system by itself is stable, the relay may considerably improve 

its dynamic properties. 

The first problem is discussed in the Sections 2 to 6, the second 

problem in Section 7. 

1. Transformation formulas 

In the following we consider, instead of the original equation (0. l), 
the more general non-linear equation 

(Ll) 

We assume that the functions g and f are subjected to restricting con- 
ditions of a very general character only, namely: 

1. 'Ihe functions g and f are bounded in any bounded domain; 

2. 'Ihe function f-is odd, i.e. f(--u) = - f(u); 

3. ‘Ihe function g is even with respect to u and odd with 

du/dt . 
respect to 

ing used only ?he assumptions 2 and 3 are not fundamental; they are be 

for the purpose of simplifying the subsequent derivations. 

Fig. 3. Fig. 4. 

We shall consider the passage of a representive point in the phase 

plane from a starting position on the u-axis to its final position on 

the same axis. Depending on the functions g and f and on the initial 
conditions, the consecutive points of intersection of the phase curve 

with the u-axis can be separated either by a single relay reaction 

(connection only or disconnection only), or by a double reaction(dis- 

connection followed by connection). Changes of position, which correspond 

to single relay reactions, will be considered in pairs, in order to 

obtain combinations consisting of disconnection and connection. Since 

the functions g and 4 are assumed to be even, it is permissible to dis- 

regard the question, whether the transformation starts from the positive 

or the negative semi-axis. Tbere are altogether five transformation 
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Fig. 5. Fig. 6. 

possibilities: 

1. Transformation bn from one semi-axis to the other. The relay is 

disconnected at u = b and connected at u = -a (Fig.3); 

2. Transformation blal from a semi-axis to itself. The relay is dis- 

connected at u = b and connected at u = a (Fi.g.4); 

3. Transformation au from one semi-axis to the other. ?he relay is 

disconnected at u = a(1 - 6,) and connected at u = -a (Fig.5); 

4. Transformation ~~~~ to the same semi-axis. ‘Ihe relay is disconnected 

at u = a(1 - 81) and connected at u = n (Fig.6); 

5. Transformation bb to the same semi-axis. Ihe relay is disconnected 

at u = b and connected at u = b + nS 2 (Fig. 7). 

The absolute values of the coordinates of consecutive points of the 

intersection of the phase trajectory with the u-axis will be denoted Ly 
A 1’ m**, A R’ respectively. 

Fig. 7. 

In order to clarify the nature of the relationship between any two 

consecutive values Ai and .4i+l, we formally integrate the equation (1. I), 
wltich lcals to the clesirerl formula 
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(i+i) 

cD tAi+J -@(Ai)=- \ [g(~, :E.),+F(u)]~~ 
A 

( 0 (A) = 
s 

f (A) d“l\ 
/’ 

0 
(1.2) 

To fix the ideas we assume that Ai corresponds to a point on the 

positive portion of the u-axis. Then, if the transformation ba takes 

place, the function F assumes the following values: 

i 

$hfor b<u<Ai 

F(u) = Ofor-a<u<b 

--h for-Ai+_r <u<a 
(1.3) 

Therefore we will have 

(i+l) 

j F(U) du = h (b - a) + h (L$+~ -- Ai) 
(i, 

For the transformation blal the integral has the same value. 

For the transformation 66 

Ci+lI 

f F (u) du = - ha& + h (A,+1 - 
J 

(i) 

For the transformations an and alal 

(i-1-1) . 

s 
P(u) du =: - 

(i) 

Ihus we obtain three formulas. 

For the transformation ba or blal 

IkAi+, + @ (&+,)I - [hAi + @ (Ai)] 

For the transformation aa or alal 

ha& + h (Ai+, 

= -- h (b - a) - 

Ai) 

- iii) 

ii+11 
1 g(u, TT)du(1.4) 

(i) 

(i+l) 

[hAi+, + (I) (Ai+,)] - [hAi + 0 (Ai)] = ha& - \ g(u. $du (1.5) 
(i) 
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For the transformation bb 
(i+l) 

[hAi+l + (I, (Ai+,)] - [hAi + @ (Ai)] = hU8, - 1 g( u, $)du (1.6) 

(9 

Analogously it is possible to link the values of Ai and Ai+k, separa- 

ted by k transformations of any kind in any order, with each other. The 

resulting relation has the form 

[h-‘%+k + 4 (h+k)] - [hh + 4 (Ai)] = R + y (1.7) 

where R is a constant, depending on the number of transformations of 

each type, while 

(i+U (i+2) (i+k) 

Y= -{ \ +,$+h + 1 g(u, %)du-i-...+(.+rl,B(u, $+J} (1.8) 
(9 (i+i) 1 

All formulas give only formal relations between the A-values, since 

the path of integration in the phase plane is not known. 

3 _. Stability of motion. 

We will show that upon the choice of a sufficiently large value for 

the parameter h of the relay characteristics, we can obtain the follow- 

ing general picture for the motion of a point in the phase plane (Fig. 8): 

Fig. 8. 

(1) If the representative point was originally in the domain C, it 

will be located in the domain A after further motion; 

(2) If the representative point was originally in the domain A,it will 

not move beyond the limits of the domain B. 

A domain D of divergent motions may or may not exist depending on the 

properties of the functions g and f. By suitable choice of the para- 

meters of the relay characteristics, the boundary of the domains C and D 
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(if the domain 1) exists) can Lc removed from the origin of the system of 

coordinates as far as desired, and the Loundary of the domains B and C 
can Le moved toward the origin of the coordinate system. 

Let us prescribe the following conditions for h: 

1. The function l/1.4 + @(;I) I shall Le positive and non-decreasing 

when d _ 1 u ( < N, where N corresponds to the Loundary of the domains D 
and C (it can be prescribed arlitrarily), while d is the minimum value 

of A, corresponding to the transformation bn. The meaning of the con- 

dition is that the relay shall compensate for the static instaLility of 

the system in the Fiven domain, if such an instaLility exists. 

2. Denote Ly go the maximum value of the function g in the domain, 

Leyond whose limits the point is known not to move, when the value A < IV 

undergoes a transformation. We require that h(b - a) > 2 NgO. The mean- 

ing of this inequality is that the relay shall produce a sufficient 

nadvancingm effect in order to compensate for the tendency of the non- 

conservative force (if it is non-dissipative) to intensify the oscilla- 

tions. 

If the system is Ly itself statically stable, then the first con- 

dition is satisfied by any positive h. The second condition is automati- 

cally fulfilled, if the force g is dissipative, i.e. when g c: 0 (along 

the part du./dt %: 0 of the phase trajectory considered,) In the general 

case both conditions can Le fulfilled Ly assuming a sufficiently large 

value for h. 

Suppose an initial value A1 satisfies the condition d < A, < N. Then 

.A, is oLtained Ly transformation ba. The magnitude of A, is determined 

Ly formula (1.4). Since 

we shall have 

[h& + a=) (41 - [hA, + @ (41< 0 

In consequence of the fact that [M t Q (A) I is a non-decreasing 

function, we imediately conclude that AZ < 4,. If A, is situated with- 

in the same limits as A,, i.e. if d < A, c N, then we analogously can 

derive that A3 < A,, and so forth. As a result we shall have a sequence 

of values A,, . . . . Al SUC!~ that A, > A, > . ..> Al. The amplitudes will 

decrease until the condition for the transformation ba Lecomes violated. 

This proves the first statement: the point moves from the domain C into 

the domain A. Note t!lat stability "in the large" may not exist [occur 1. 

l'he series of transformations bn is followed by one of the trans- 
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formations blal, aal, alal, or bb. These transformations may lead, 

depending on the properties of the functions g and f, to .4~+~ < Al, as 

well as to Al+1 > Al. In the latter case, after one or several trans- 

formations of such type, the point enters the zone B, which unifies 

states, obtained by the transformations an, alal and bb, to be followed 

by the transformation bn. The latter returns the point, with the next 

oscillation, into the zone A. In this manner a point, originally located 

in the zone C, undergoes several times the transformation ba before 

arriving at the zone A; then it goes through combinations of various 

transformations, which do not lead it beyond the limits of the zone B. 

3. Stability of limit cycles 

We restrict the class of functions g under consideration, by imposing 

upon them the following conditions: 

(1) The product gdu/dt does not change its sign anywhere in the 

entire zone A; in other words, the force g is either dissipative or non- 

dissipative; 

(2) The absolute magnitude of g is a non-decreasing function of rfu/dt 

at any u, in other words 

We shall prove now the fundamental theorem: if there are limit cycles 

in the system, all of them are stable if g(u,du/dt)(du/(it)> 0 and they 

are all unstable if g(u, du/dt)(du/dt) < 0. 

For the special case of a linear equation and of basically compatible 

relay characteristics, the particular feature of such systems - - the 

possibility of the existence of several stable limiting cycles in the 

absence of any unstable ones - - was stated in a paper by A.S. Alekseev 

[l 1. He has also shown that depending on the relationship between the 

parameters, the system may contain complex limit cycles. It is natural 

to expect the existence of such limit cycles in the general case as 

well. We are going to examine their stability independently of their 
complexity. 

We refer to our formula (l.?), expressing the relationship between 

the values Ai and Ai+kl separated from each other by any sequence of k 

transformations. The total differential of (1.7) is 

[h $_ f (Ai+k)l d-&+k- [h + f (Ai)] dAi = dj dAi 

from which 
t 

dAi+k 1’ + f (Ail] +dy /’ dAl 

-q-= ‘z + f b‘++k) 
(3.2) 
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Assume that the sequence Ai, . . . . A;+k belongs to a limit cycle, 

which closes at the kth, oscillation, SO that Ai = Ai+k. It is known 

[2 1 that the stability of the cycle is determined by the derivative 
(3.2) with Ai+k = Ai suLstitutec! into its right-hand side. This substitu- 

tion leads to 

dAi+k [IL + f (Aill+ dy / dA i 
-----~ 

dA, 1~ + f (Ai) 
(3.3) 

The staLility of the cycle flepends on the sign of the derivative 

dU’/chli. Differentiating with respect to Ai the first term in the 

expression for the function Uf we find 

All of the three terms just oltained have the same sign identical with 

that of g on the portion of the phase trajectory considered. Indeed, the 

phase trajectories, starting from two points at infinitesimal distance 

from each other, cannot intersect each other; therefore dAi+l/dAi > 0. 

The phase trajectory starting from the point Ai + dAi goes upward. ?here- 

fore, taking into account that g is a non-decreasing function of du/dt, 

we find that the integral within the same limits along that path is 

aLsolutely larger, so that 

(i+l) 

sgn 5 
$$du =sgng 

(0 ’ 

The same considerations apply to the remaining integrals appearing 

in the expression for '4. Thus we finally have 

dAi+k 
d;i~>l 

1 
'if dq>O, i.e. if g g<O 

if d&<O. i.e. if g $..>O (3.5) 

The result is instaLility of the limit cycle in the first--case an1 

its staLility in the second case. 

The general picture of motion, derived in Section 2, remains the same 

in both cases: there is a region C, from which the phase trajectories 

lead into the region A, nearer to the origin of the system of coordinates. 

In the second case, when there may he stable limit cycles in the system, 

it is not difficult to form an idea about the further motion of the 

point. After having entered the region A, the phase curve travels around 

one of the limit cycles or approaches the origin of the system of 

coordinates. The motion becomes much more complicated, if there cannot 
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be any stable limit cycles. After having entered the zone A. the phase 
trajectory does not cross the limits of the zone B. it does not approach 
any limit cycle (since there cannot be any stable limit cycles), nor 
does it travel around the origin of the system of coordinates (since the 
origin of the system of coordinates is unstable, because gdu/dt < 0). It 
is, therefore, natural to imagine that the phase trajectory, if continued 
indefinitely, fills out some region. To describe such a aotion for 
extended periods of time it appears proper to use some ideas of the 
theory of probability. 

4. Representation of the motion by means of probability 
density 

We introduce into our considerations a function p(A), the probability 
density, such that the element of prclbability d@(A) of the intersection 
of the phase trajectory with the u-axis in the interval (A,A + da) is 
expressed by the formula 

c&V(A) = y(A)&4 (4.1) 

In the following we shall consider the motion only in the zones A and 
B, the duration of which can be unlimited, as shown above. Iherefore the 
function p(A) just introduced has the property 

P 

5 
P(A)dA= 1 (4.2) 

CL 

where CI is the inner boundary of the domain A, while p is the outer 
boundary of the domain B, 

Assume the probability density pi(A) to be given in the interval 
(cl,@); it is-required to determine the probability density p,(A,f after 
transformation, if the transfo~ation function A, = 9 (A,) is known, To 
simplify the #problem, we first consider the case when the function just 
mentioned produces a single-valued transformation of the interval (a,/31 
of the values of A, into the same interval of the values of A, and vice 
versa, so that only one value of A, corresponds to one value of A,, and 
vice versa, Besides, we assume that 4’ f 0 and 9’ f w in the entrre 
interval. After transformation the value A, is changed to A, and the 
value A, + d4, to A, + d4,. Since the transformation is single valued in 
both directions, the elements of probability are equal in the intervals 
considered, so that 

Thus we have for this simplest case the following formula for the 
transformation of probability density 

(4.3) 
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This result can be generalized to include the case of transformations, 

which are not single valued in both directions. &sume that for various 

parts of the basic interval we have the following transformation 

formulas: 

A, = yi(A,) when u<A,<cr, 

Aa= ipa when %<Ar<% (4.4) 
. . . * . . f . * * . , . . . 

A2= %(AI) when a,-l<A1<I! 

We furthermore assume that the basic interval is subdivide(l in such a 

manner that for each separate transformation the mutual corresponrlence 

remains single valued. The superposition of the transformations violates, 

however, in the general case, the single-valued correspondence in the 

reversed direction (Fig.o). On some parts (e.g. c.x'~‘ and CX"..O"'~~ 

the transformation takes place several times from various portions of 

the original interval. (11 other parts (e.g. c~',cx"~! there will be. on 

the contrary, no transformations from any part of the original interval. 

It is obvious that on all portions of the original interval of the 

values of A,, the probability densities from separate elemental trans- 

formations will add up. 

a a.2 P 

a’ a’ p’ 

Fig. 9. 

This leads to the following generalization of the formula (4.3): 

P2 (A21 = Z’Pl PM e’i;A,) , (f9i (A,) = 4 

i 
(4.5) 

'Ihe sumnation extends, on each part of the interval (a,@), over such 

values of i, which correspond to transformation functions on the part 

considered. 

As stated already above, there are five functions for the equation of 

the second order, each of which carries out a single valued transforma- 

tion (ba,blal,aa,alnl,bb) in both directions. Therefore, the transforma- 

tion problem can become quite complicated in the general case. 

5. Stationary probability density 

In the general case, when the function pi is given arbitrarily, the 

function p2 arising after transformation, will differ from the original 
function. In the following we consider the question, how to find such a 
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probability density, that it remains unchanged after transformation by 

formulas (4.51, that is p1 = pz = pO. It is obvious that such a function 

will remain unchanged after any number of transformations, since the 

transformation formulas are always the same. Therefore we shall call po 

stationary probability density. Ve assume that the stationary pro- 

bability density is finite at every point of the interval, that it exists, 

and that it is unique. 

For a practical determination of the function po, the method of 

successive approximations can be used. To this end we start from an 

arbitrary function pl, satisfying the integral condition (4.21, and we 

subject it to multiple transformation by formulas (4.51, continuing the 

process until the approximations start to coincide with each other with- 

in a prescribed degree of accuracy. The question of the convergence of 

the process is not to be examined here. 

Let us study some properties of the function p, which become evident 

in the course of application of the method of successive approximations. 

For the purpose of simplifying the subsequent discussion we exclude from 

consideration statically unstable systems. Then the five elementary 

functions of transformation reduce to only two: qS1, corresponding to the 

transformation ba, and $, corresponding to the transformation aa. 

Depending upon the properties of the transformation functions, we can 

obtain three fundamentally different types of transformation: 

1. The transformation of the first type produces single-valued 

correspondence in both directions in the entire interval fFig.10); 

2. The transformation of the second type produces single-valued 

correspondence in both directions in the entire interval a < A, < /? and 

in a part of the interval a < A, < f3 (for a < A, < /?' and for 
a' < A, < f3 1. There are no transformations on the part /S" < A, < a' 
fFig.11); 

3. 'lhe transformation of the third type is not single-valued: on 

parts (aa') and (/Y/3) a single-valued transformation in both directions 

takes place, but on part (a'p') the transformations are superposed, 
(Fig.12). 

Fig. 10. Fig. 11. 

The transformation of the first type occupies a limiting position 
between the transformations of the second and the third types. 
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It is possible to establish a relation between the type of trans- 

formation and the stability conditions of the limit cycles, obtained in 

Section 3. We are going to show that gdu/dt > 0 necessitates trans- 

formations of the second type, while gdu/dt < 0 leads to those of the 

third type, and g = 0 to those of the first type, 

Fig. 12. Fig. 13. 

let us apply formula (1.7) to a sequence of two transformations of 

the values A, = y - 0 and A, = y + 0 (the point A, = y separates portions 

of value A, , which are to undergo the transformations aa and ba, 
respectively). For the point y - 0 we will have a sequence of trans- 

formations (au - ba), for the point y + 0 a sequence of transformations 

(ba - au). ‘The phase trajectory of the point y - 0 embraces the 

trajectory of the point y + 0, (Fig. 13). l3y virtue of the same consider- 

ations, which we have used in the proof of the stability of the limit 

cycles in Section 3, we find 

where Y_ and Y+ correspond to the transformations of the points y - 0 

and y + 0, respectively. 

‘Ihe constant R in formula (1.7) does not depend on the sequence of 

the elemental transformations and has, therefore, the same value in both 

cases. Taking into account that [ /LA + f(A) I is a non-decreasing function 

of A, we find 

a’>p’ when g$>O, a’=p’ when gzz0, a’<p’ when g$<O 

In other words, if only stable limit cycles are possible, then the 

transformation of the second type takes place, if only unstable ones are 

possible, we will have transformations of the third type; in the limiting 

case we have transformations of the first type. Let us consider the 

course of the process of successive approximations for each type of 

transformations. 

Starting with the transformation of the second type, we assume that 

in the interval (a,/31 the function p1 is arbitrarily given to be finite 

and never vanishing. After the first transformation there will appear a 

portion @‘a’ 1, along which the function p2 of the second approximation 
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will be zero. With each new transformation the specific weight of the 

portions, where the function of the ith approximation equals zero, will 

rise. It is possible to imagine that in the limit, after an unrestric- 

tedly large number of transformations, we will obtain a system of S- 

functions; this corresponds to one or several stable limit cycles. Of 

course, the procedures indicated are not applicable for practical 

determination of stable limit cycles; they are given here in order to 

establish a general point of view for all types of transformation. 

Apparently the process of successive approximations for transforma- 

tions of the third type will not lead to a system of 6-functions; this 

corresponds to the fact of absence of stable limit cycles in the system. 

In the case of transformations of the first type there is no need for 

the method of successive approximations for determination of the 

stationary probability density. It can be obtained from the following 

considerations. 

For the transformation of the first type we have YS 0. Therefore 

equation (3.2) assumes the form 

dA2 h + f (Al) -zzz 
dAt h-tf(A?) 

This formula is equally valid for the transformation ba and for the 

transformation aa. Thus we have the following single formula for the 

transformation of the probability density 

(5.1) 

'lhis relationship determines the transformation, single-valued in both 

directions, of the function p1 from the interval (a,@ )to the same 

interval. Consequently, having transformed by means of this formula the 

function 

P* (4 =$@+f(A)I (5.2) 

where T is a constant, we obtain as a result the same function p*(A). 

This means that p*(A) represents the desired function p,(A) multiplied 

by some constant factor. This constant factor is to be chosen in such a 

way as to fulfil the fundamental integral condition (4.21. 

Ultimately we obtain the following formula for the stationary 

probability density 

p. (A) = [h + I’(41 (1 lh + f(A)] dA)-l 
ct 

(5.3) 



The results of examination of the first type of transformation, 

corresponding to complete absence of a non-conservative force, may be, 

apparently used for an approximate description of the motion in the case 

of a tr-ansformation of the third type, provided the absolute magnitude 

of the function g is small enough. 

Thus, in the case of the transformation of the second type, the 

motion is described by means of limit cycles, and in the case of trans- 

formations of the first and third types by means of stationary 

probability density. A well-known analogy can be used for the Lehavior 

of the system when it has stable limit cycles and when it has none. In 

the first case the motion, having started under arLitrary initial con- 

ditions, tends in the course of time to assume a stationary state inde- 

pendent of the initial conditions. In the second case the motion ap- 

proaches again a stationary state, independent of the initial conditions 

(or of the distribution of probability over the initial conditions). In 

the first case, however, the stationary state represents a fully defined 

periodical motion, fixed precisely in the phase plane, and in the second 

the motion is non-periodical, with varying non-repeating amplitudes; the 

latter state is described by stationary probability density. 

Apparently, if it is sufficient to have averaged characteristics of 

motion for large values of time, the description of the behavior of the 

system under consideration by means of probability density is by no 

means inferior to that by means of cycle parameters for systems with 

stable limit cycles. If we know the stationary probability density, we 

have the means of calculating the average "period", the average value of 

the amplitude, etc. We note that limiting values of some quantities 

(minimum period, maximum amplitude) can be obtained simply from inspec- 

tion of motion in the phase plane without searching for the stationary 

probability density. 

6. Linear equation (absence of stable cycles) 

Returning to the original linear equation fO.l>, we change the vari- 

ables as follows: 

This gives 

dg+“g+ rue + F, (~2) = 0 (6.1) 

where the function F,(uO) has the shape shown in Fig.14. There are five 

independent parameters in the equation, namely r,r,k,Gi,SZ. 

In the present section we will consider the cases 6 4 0, which 

correspond to absence of stable limit cycles. 

Let us start with the simplest case E = 0. Under this condition, the 
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boundary of the domains C and D moves toward infinity and the system is 

stable fin the large'. According to Section 5 the condition t = 0 leads 

Fig. 14. Fig. 15. 

to transformations of the first type. Formula (5.3) for the stationary 

probability density becomes 

The integration limits are to be established by inspection of the 

motion in the phase plane fFig.15). 'Ihe equations of the portions of the 

phase trajectories are of the form 

$2~" + $ruo2 = Cl on parts where F,(S)= 0 

-p+ + mo2 + u” sgnu' =C2 on parts where F,(a") = Isgnu* 

After "sewing up" the portions of the phase trajectories along the 

straight lines u"= -(l- Si) and u" = 1 for the transformation aa and 

along the straight lines u = - k and u" = 1 for the transformation ba we 
obtain 

A* = /(Ax ++)a_+(&- I)-+- (transformation bn) 
t 

A 2= 
v! 

,- A,++-)1+&+ (transformation au) (6.3) 

tking these formulas for the transformation of the quantity A,=k + 6, 
ive obtain the values of CI a&,8: 

a- J/(/2 + s2 + +)” - + (k - 1) -; 

P-4) 

With the values of CI. and p thus calculated,the mean amplitude becomes 
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A,=fA&(A)dA= ‘/a P - a7 + l/sr (P - c-e 
(9 - a) + vzr (9 - aa) 

a 

(6.5) 

Figs. 16 and 17 show the mean amplitude A0 as a function of k for 

6, = 1.0 and 6, = 0.5 and for various values of r. Ihe same figures give 

the maximum and minimum values of A(A = 01 and A := /3). 

When r = 0, the values of A in the region (a,/-3) are of equal prob- 
ability and formula (6.5) becomes 

Aa = '/s(a t B) 

7, 
q=s,=ru 
I P=O 6 

P/’ 
/ 

/’ P I 
TJL , 

,/A, r=? 
/ 

/ 1 5 I L- 

/’ .’ 
,’ 4 

1’ r=Q 

+ 

Fig. 16. 

J 

Fig. 

The magnitude of the Whalf-periodn as a function of 

the initial amplitude A, for r = 0 is expressed by the 

formulas: 

for the transformation ba 

for the transformation .aa 

the magnitude of 

following 

T = 2 1/2 (A, - 1 + 6,) -I- v&&xj 

Ihe mean half-period i", can be calculated from the forn1111n 

(6.6) 

(6.5) 
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P 

To= &\T(A)dA 
cl 

(W 

T, as a function of k for 6, = 1.0 and 6, = 0.5 is shown in Fig. 18. 

Fig. 18. 

We turn now to a study of the characteristics of the motion when 

6 < 0. ‘Ihe relation between A, and A , to be obtained, as in (6.3), by 

means of the method of “sewing up” t e solutions, is not derived in K 

explicit form. We confine ourselves to the case r = 0. In this case the 

equations, which determine A, in terms of A,, have the following form: 

for the transformation aa 

- E2 [A, - (I - 6,)] = EUl +h (I - EUl) 

E2[A2-I] =EY2-h(1 +2u2) (6.9) 
211 - Va = E (2 - 6,) 

for the transformation ba 

- &2 [A, - k] = wl + ln (1 - ml) 

E2 [A, - 1]=EU2-h(l---272) (6.10) 

v,--z$=s(k$l) 

The expression for the derivative for both transformations can be 

written in the form 

dAz _ L-2 (1 - WI) 

dAl %(I +fw 

Practically, the computation of A, in terms of A is carried out in 

the following order: starting from a chosen value o ‘f ul, we determine u2, 

and then we find A, and A,. 

In a study of the motion, the question concerning the boundary of the 

stability domain arises first. To determine that boundary it is necessary 

to find the periodical solution (A, = A,) of the system of equations 

(6.10) corresponding to the transformation ba, in other words to find the 
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amplitude of the largest unstaLle limiting 

of E is shown in Fig.19 for various values 
cycle A* . The function A* 
of k. 

-e 
Fig. 19. 

The computation of the stationary probability density by means of the 

method of successive approximations represents in practice a very 

laborious process. The formulas become too complicated already at the 
second approximation, if the computations are carried out in general 

form. It is more convenient to proceed numerically using graphical con- 

structions. A further complication is caused by the fact that it is 

necessary to deal with discontinuous functions, and the number of dis- 

continuities increases with each further approximation. In some cases, 

however, when great precision is not required, some ways of simplifica- 

tion can be indicated. 

Thus, for instance, when r = 0 in the formula (4.5) for recomputation 

of probability, the coefficients of pIcAl) do not depend strongly on Ai 

in a wide interval of variability of Al. Therefore these coefficients can 

be considered as approximately constant, having different values for the 

transformations aa and ba. If we take a constant as a starting approxima- 

tion, then all further transformations reduce to a consecutive super- 

position of discontinuous functions. The computation consists in the 
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determination of the points, where discontinuities appear, and in the 
determination of the magnitude of the discontinuities themselves. 

As an example we give here the results of computation of the station- 
ary probability density for the following values of the parameters 
CFigs.20,21): 

i) Az1.9, E==--0.1, &I= 0.1, 82 = 0.1 

2) k = 2.9, E = -0.01, 8, = 0.2, 82 = 0.1 

The graphs show broken lines corresponding to the zero, the first, 
the next to the last and the last approximations. As is evident from the 
examples, the first approximation represents the course of the curve of 

Fig. 20. 

stationary probability density, already in fundamental agreement with 
the general character of the curve, although there are, in certain spots, 
still considerable differences between the first and the last approxima- 
tions. 

1 2 3 A 

Fig. 21. 

In view of scarcity of calculated material, it is impossible to state 
conclusions concerning the necessary number of approximations. It is 
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merely possible to state that in some cases that number can be quite 
large. Referring to Fig.20, we see that the seventh and the eighth 

approximations differ still notably from each other. In actual problems, 

however, the exact knowledge of the curve of the stationary probability 

density will not be necessary, since the ultimate result of the computa- 

tion will consist of average values of quantities,and these values will 

not be influenced strongly by fine variations of the shape of the curve. 

Thus, for the two given examples the mean values of the amplitudes A,, 

computed from the first approximation, are A, (1) _ 2.01, A (I) - 2.14, 

respectively, 
A (15) = 

while the last approximation leads to A, t8) Z 2.03, 

0 
= 2.15, respectively, 

It appears desirable to find ways of obtaining a rough approximation 

for the curve of stationary density of probability with a minimum amount 

of labor. 'Ibis proves to be possible at least for such values of 6 and 

6 1, which are small as compared with k. 

Fig. 22. 

Let us investigate the procedure of transformation for small values 

of E andiS1 somewhat more in detail (Fig.22). The zone (y,/3), whose 

points are to undergo the transformation ba, represents a small part of 

the total interval (a,@); it is the smaller, the smaller t and 6, are. 

'lherefore, the portion, which at the second transformation becomes the 

portion /3'y (this portion does not contain any transformation from 

portion (y/3)), represents the larger part of the entire interval. Assume 

that the point /3' transforms consecutively into the values ,fY, fi'"',..., 

pck), so thato(k) > y, but p(!-l) < y.The stationary probability density 

must satisfy the following condition: 

The validity of this chain of equalities follows from the fact of single 

valued reciprocal correspondence for the transformation of the intervals. 
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magnitude of the 

Fig. 23. 

total probability for each interval is unknown; it 
is, however , possible to estimate it. The fundamental integral property 
(4.2) of the stationary probability density can be written, in the case 
considered, in the form 

(k-l)AW+Wr-tWa=l (6.12) 

where W and W2 are the total probabilities for the intervals ((r,f3’) 
and (~(&),~), respectively. 

Since a.part of the portion (~(‘-l,~‘k’) was transformed on the 
portion (I’ve) at the preceding transformation, we must have 

O<Wa<AW (6.13) 

It remains to estimate the magnitude of Wi. We find the value of p”“, 
which after transformation as gives /3’, then of @O”“, which ives p”‘, 
and so forth, until we get $(“I, so that /3c(2) > ~1, but $ $i+l) < ~1 . 
We have then obviously 

AW<W,<(i+1)AW (6.14) 

Substituting (6.13)and (6.14) into (6.121, we obtain an estimated value 
for AR: 

If k is large and i is small, then the value of A W can be determined 
with practically sufficient accuracy. Knowing A W we can obtain an 
approximation for the function p,, say, in the form of a discontinuous 
curve, the discontinuities in the points p’, p”, . . . , p’( k, being 
determined from the conditions (6.111, or in the form of a continuous 
curve. The total probabilities W1 and W2 on the limiting portions remain 
undetermined in this method of calculation. 

7. Linear equation (possibility of stable cycles) 

We consider again the equation (6.11, in which we now assume 6 > 0. 
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In this case the system may have stable limit cycles, as can be concluded 

from Section 4. A more detailed study shows that the system has either 

no cycles at all, or it has one stable cycle. Fig.23 shows, in a 6,~ 

system of coordinates, the region P of no auto-oscillations, the region 

Q of simple limit cycles and the region R of complex limit cycles for 

the case r = 0 and k = 2. It is important to note that the system is 

always stable “in the large” and that for an arbitrary relation between 
the parameters, the amplitude of the limit cycle does not exceed the 

value k + 2 6, 

If the system has no limit cycles, then it is necessary to distinguish 

between the effects of the relay at small and at large deviations. At 

small deviations the presence of a non-vanishing 6, leads to a decrease 
of damping. At deviations in excess of k, when the madvancingn effect of 

the relay is being utilized, the damping rises sharply. Fig.24 shows the 

Fig. 24. 

relationship of the ratio of two consecutive amplitudes for a system 

with r = 0 for various values of 6 in terms of the initial amplitude A, 
at r = 0. The broken lines in the domains A, > k show the ratio of the 

amplitudes for the case of a relay of usual characteristics. The curves 

show that the damping effects of the relay with advancing characteristics 

become most pronounced at initial deviations somewhat exceeding the 

value k + 6,. 
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